
On Replication Strategies for Data Intensive
Cloud Applications

Rashmi Ranjana T P, Jayalakshmi D S, Dr. Srinivasan R
Department of Computer Science and Engineering

M S Ramaiah Institute of Technology
Bangalore, India

Abstract— Data Replication is an important aspect to be
considered under the cloud and particularly so in the area of
data intensive applications. Various replication strategies
used in Amazon, Google and Microsoft cloud offerings are
discussed followed by comparison of current research
scenario and associated algorithms through a suitable
tabulation. The merits and gaps existing in these algorithms
and suitable suggestions for improvement are presented in
this paper.

Keywords- Cloud Computing, Data Replication Static and
Dynamic, Data Intensive Application

I. INTRODUCTION

Over recent years there is drastic increase in the size of
data that needs to be managed effectively, where this data
can be structured or unstructured. Data Intensive computing
refers to computing of this large scale data [1]. Computing
in such applications is not capacity driven instead I/O
driven. Such data of size in petabytes cannot be stored on a
single table and hence data must be portioned, distributed
and requires specialized datacenters. The traditional
Relational Database Management Systems [RDMS] do not
fit to consistency and scalability.

At present there are many custom software packages
that manage structured data and metadata in RDBMS
(Google, Yahoo!, Facebook etc., also use RDBMS for
OLTP). Data intensive clouds provide high computation
power as an abstraction to users. A Data Intensive cloud
can be deployed in two ways based on its usage as: private
cloud or public cloud. There are complex computations that
must be performed which require processing and
management of large scale data, achieving high
performance and high throughput, and storing it efficiently
for future use. There are many research issues, in terms of
capturing and accessing data effectively and fast.

Data intensive cloud applications are deployed on
multiple data centers. In such clouds, faults are normal
which lead to failure and crashes that occur any time.
When an application or service needs data which is not
available on local database, remote access to data on other
data center has to be made. Distributed file systems such as
GFS, HDFS, and so on, provide solutions to such
applications. Data Replication can be defined as technique
in which each logical data item of a database has several
physical copies, each of them located on a different

machine, also referred to as site or node [2]. Among the
Distributed File Systems there are different levels of
replication that is maintained in each of them. The data
replication level in popular cloud data management systems
are: Amazon S3 & Dynamo – item level, GFS – chunk
level, HDFS – block level.

This approach can be used to reduce the latency of
remote data access by storing data close to application and
service that use it. Although there is improvement in
performance by replicating data in each data center and
accessing local databases as when required there are
challenges with respect to synchronization of data and
storage of large number of replicas. To cite a few, we are
giving below some typical case studies.

II. DATA REPLICATION STRATEGIES - EXISTING

SCENARIO

In recent years, the task of storing data persistently is
done by simple storage system which can maintain a large
scale data and also achieve availability and reliability.
Service providers of cloud environments are responsible for
providing such large scale data management systems.

A. Amazon Web Services – RDS

Amazon Relational Database Service (RDS) is a web
service which makes it easy to set up, operate, and scale a
relational database in the cloud. Amazon RDS DB
Instances can be provisioned with General Purpose (SSD)
Storage, Provisioned IOPS (SSD) Storage, or Magnetic
Storage [3]. For production workloads, Amazon RDS
provides replication to enhance database availability, scale
beyond the capacity constraints of a single DB Instance for
read-heavy database workloads, and disaster recovery.

There are two types of complementary replication
features provided by Amazon RDS: (1) Multi-AZ
Deployments – This is an option during deployments which
increases the database availability and protects database’s
latest updates which are lost due to unplanned outages.
When a DB Instance is created as multi-availability zone
(AZ) deployment, RDS keeps a replica of data in standby
mode in another availability zone which is physically at
different location. The updates to database are made
concurrently on both primary node and standby replica to
prevent inconsistency in data. In cases of failure Amazon
RDS will automatically failover to a stand-by which is up-
to-date and there is no interruption in operations performed
on database.

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2479

(2) Read Replicas – Although there is standby replica,
which can be used to serve heavy read traffic, it is not
possible to directly access it before failover. Thus read
replicas feature can be used to elastically scale out capacity
of single DB instance. When there is heavy read, multiple
replicas of given source DB can be created in the AWS
regions and thereby increase the overall throughput. The
changes made to source DB instance are updated and then
associated read replica is propagated with this update using
MySQL’s native replication (i.e., asynchronous
replication).

Thus, these two techniques can be combined where
Multi-AZ deployments are given as source DB instance to
read replicas for getting advantages of availability,
durability and scaling.

B. Amazon Web Services – DynamoDB

DynamoDB is fully managed NoSQL database service
that has very high availability and scalability due to
key/value based data store. The data items that need to be
accessed for read and write operations are identified by a
unique key. None of the operations span more than one
item in such systems. Consistent hashing principle is used
to store each data item and their replicas on hosts.
DynamoDB automatically spreads the data and traffic for a
particular table among sufficient number of servers to
handle request, while maintaining consistency and
performance.

C. Windows Azure Storage

The design goal of Windows Azure storage is to provide
consistency, availability and partition tolerance (CAP
Property) and load balancing. The layered architecture
consists of three layers: 1) Front End Layer – takes the
incoming requests, 2) Partition Layer – manages the
partitioning of all of the data objects in the system, and 3)
Distributed and replicated File System Layer (DFS) -
actually stores the bits on disk and is in charge of
distributing and replicating the data across many servers to
keep it durable. In DFS layer the data is stored as “extents”.
For availability, each layer has its own form of automatic
load balancing and dealing with failures and recovery in
order to provide high availability when accessing your data.
For durability, this is provided by the DFS layer keeping
multiple replicas of your data and using data spreading to
keep a low MTTR when failures occur. For consistency, the
partition layer provides strong consistency and optimistic
concurrency by making sure a single partition server is
always ordering and serving up access to each of your data
partitions [4].

To maintain high availability for service and overcome
node failures, there are different methods followed at each
layer. A typical case is shown by a flow chart below in Fig
1:

D. Google File System

Google File System is a distributed system that runs on
clusters. The architecture followed is Master/Slave pattern,
where Master is responsible for managing and monitoring
clusters and data is stored on slaves called as chunkservers.
In order to provide data safety and availability, data is
replicated and stored on multiple chunkservers. By default
minimum number of replicas in this system is three. Files

are divided into chunks (referred to as blocks) of fixed size
i.e., 64MB. Master has metadata which manages mapping
between files and chunks, as client always refer to file as a
whole.

Re-replication is performed for those chunks whose
replica number has fallen below minimum replication count
due to failures such as chunkserver crashes, disk failures or
failed integrity checks. Another reason for re-replication
can be to improve data access by increasing replica count of
chunks, which belong to files that are accessed frequently.
When the number of replicas increases and the file is not
accessed more often, they are not deleted immediately but
marked as deleted. Master periodically runs garbage
collector to remove all chunks that have become orphaned
or marked as deleted for at least three days.

Above mentioned are most popular commercial service
providers for managing data intensive applications. The
challenges organizations usually face when moving to the
cloud are incompatibility issue, security issues, reliability
issue and network issue.

Figure 1. Flowchart showing the methods used to overcome node
failures

Going forward, there are many related works on cloud
storage systems and cloud data replication which aim at
bringing out most of the positive features of data replication
and propose new strategies, models, algorithms to
overcome issues without compromising on QoS.

E. Replication strategies in research literature

Data Replication algorithms can be categorized into two
types:

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2480

(1) Static Replication - Replication strategy is
predefined

(2) Dynamic Replication - Algorithm creates and
deletes the replicas based on the access patterns of each
replica.

The static replication algorithm proposed in [5] gives
detailed description on the architecture of GFS, in which
single master makes decision on data chunk replications
based on factors like: average disk space utilization, number
of recent replica creation, distribute new replicas. A new
replica is created when number of replicas in the system for
a particular data chunk falls below a limit specified by user.
In [6], a p-median static centralized data replication
algorithm is proposed along with a model for placing these
new replicas so that the total distance between requesting
sites and replica sites is minimized.

As there is uniform replication with fixed number of
replica in Windows Azure and Amazon S3 there is
inefficient resource usage for user. Each user has different
requirements in terms of availability, durability, reliability,
and hence static replication strategy cannot be used. To
satisfy this, in [7] four differentiated replication strategies
are proposed for datacenters which are combination of
uniform (same number of replicas) or non-uniform
replication with or without DHT lookup algorithm. The
algorithms which take into account both user requirements
and system behavior gives best results. In this work only
OPERA (OPEn Reputation Architecture) monitor server is
used to give reputation scores for all datacenters based on
their availability. For every user request based on
requirement one of the four strategies are used. Objective of
the algorithm is to improve availability by increasing
number of replicas and placing them on set of host
machines randomly.

Static replication strategies are inadequate to those
applications where computation patterns are non-uniform.
Thus an adaptive replication strategy is proposed in [8]
which adapts to change in workload. FIFO (First in First
Out) scheduler and Fair scheduler are used to achieve better
data locality with low system overhead. Instead of
performing remote access to data every time it is required
for computation, subset of a popular file can be stored on
local node as a replica. There are two approaches: Greedy
Approach – Any remote access data is replicated and
Probabilistic Approach – Data not replicated as soon as
they are read, instead they are replicated (or evicted) with a
probability p. The number of replicas created for a file is
maintained by Aging and Replica Eviction Policy which
use LRU (Least Recently Used) policy in Greedy approach
or use probabilistic approach. The threshold value Budget is
mainly responsible for decision making in creation of new
replica which can be a bottleneck.

In the previous work, importance is given in
maintaining number of replicas for improving data locality.
The location of this replica is of concern only when data
center storage is limited. In scientific cloud workflows data
must be stored effectively on data centers reducing data
movement during workflow execution. In [9], matrix based
k-means clustering strategy is proposed for such systems
where data placement is of greater importance. In this
strategy the datasets which are required by many tasks,

together are said to be dependent data sets. Such kind of
dependent data sets are kept in one data center so that there
is no need of data movement. There are two stages in this
strategy: Build-Time Stage – Algorithm goal is to set up k-
initial partitions for k-means algorithm and Runtime Stage
– Algorithm goal is to cluster the newly generated datasets
to one of the k-data centers based on their dependencies,
which will be calculated dynamically [9]. While placing
datasets to a data center in runtime stage, it must be
checked if there is space available for storage and it can
balance overall workload of system.

Continuous change in dependencies between the tasks
and data centers is an existing challenge which requires
change in data placement strategy accordingly. Since the
idea to reduce large volumes of data movement, replication
can be used along with the two stages which are proposed
in [9]. An extension of this work is given in [10] which
proposes an additional step - Replication Stage. During
Replication phase, tasks are scheduled to those data centers
where most of the datasets required by them are available
locally. This algorithm is developed to improve response
time of the system.

The systems where in communication resources are
bottleneck, data replication strategy is used for storing data
closer to the locations where computing applications are
executed. In [11], an energy efficient data replication is
proposed to optimize the energy consumption and
bandwidth along with improving other QoS. Data access
statistics is used to identify data items which are most
suitable for replication and replication sites where they can
be placed. Cloud Manager at central database periodically
performs analysis on statistics of data availability and
updates for data, which is used to find out bandwidth and
energy that is consumed. A model is presented for data
transmissions in data centers such as: uplink and down link
transmissions. The simulation results also show speeding up
of workflow execution by minimizing communication
delays.

In [12], a model is designed to get the relationship
between availability and replica number, to find minimum
number of replicas that a data item can have to realize
availability leas required, to decide on where these replicas
need to be placed on data nodes taking into account
capacity and blocking probability of each node. When the
number of sessions has reached its upper bound, connection
requests from application servers will be blocked or
rejected [12]. If there is an efficient replica placement
strategy used, then inter-request and intra-request
parallelism are improved, which also result in improvement
of performance and load balance of HDFS (Hadoop
Distributed File System) cluster. In this system, block
independent distribution policy is considered. For varying
workloads a Dynamic Replica Control Strategy is used to
run on name node. There are two threshold values, namely
threshold for migration and threshold for deletion based on
which this dynamic replication control works.

Another adaptive strategy is proposed in [13], to
improve reliability of system and other QoS. Replication
process is managed by a scheduling broker, which contains
all the information about the number of replicas and their
locations at

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2481

TABLE I. COMPARISION OF EXISTING REPLICATION STRATEGIES

Sl.
No.

Title of Paper Techniques Used What is
Optimized

Experiment Setup Metrics for Evaluation

1

Energy-Efficient Data
Replication in Cloud
Computing Datacenters [11]

 Dynamic Data Replication

Strategy
 3 tier topology
 Model for data transmissions

(Uplink and Downlink
transmissions)

 Datacenter

Energy
consumption
 Residual

Bandwidth

GreenCloud
Simulator

 Data center energy

consumption
 Available network

bandwidth
 Communication delay.

2

A Light-weight Data
Replication for Cloud Data
Centers Environment [13]

 Adaptive Data Replication

Strategy
 Lightweight time series

prediction algorithm - HELS
(Holt’s Linear and Exponential
Smoothing)

 Non-Functional

QoS
 Overall

Reliability

CloudSim
Simulator

Response time

3

Differentiated Replication
Strategy in Data Centers [7]

 Differentiated Replication

(DiR)(Uniform / Non-Uniform
Replication)
 DHT lookup algorithm.

 Resource

Utilization
 Availability

Chord/DHash
(C++ on Linux)

 Execution time
 Availability

4

SWORD: workload-aware data
placement and replica selection
for cloud data management
systems [14]

 Workload-Aware Data

Placement & Replication
approach
 Incremental Repartitioning

Technique
 Hypergraph Partition

Algorithm (HPA) - to model
workload

 Query Span
 Reduction in total

resource
consumption
 Transaction

latency
 Overall

Throughput

In Application
Domains like
 Distributed

Analytical
 Distributed OLTP

Data Stores

 Number of Partitions

 QuerySize

 Number of Queries

 Graph Density

5

DARE: Adaptive Data
Replication for Efficient
Cluster Scheduling [8]

 Adaptive Data Replication

Scheme
 Greedy Algorithm
 Competative Aging Alogrithm

(i.e LRU, LRF)
 Probability Algorithm -

ElephantTrap

 System Overhead
 Data Locality

In Hadoop
Framework

 DataLocality

 Geometric Mean of the

Turnaround Time (GMTT)

 Slowdown of Job

6

A Data Placement Strategy in
Scientific Cloud Workflows [9]

 Matrix based k-means

Clustering Strategy
 Build-Time Stage - to set up k-

initial partitions
 Runtime Stage - cluster the

newly generated datasets to
one of the k-data centers

Data Movement
between Data
Centers

 SwinDeW-C

Simulation
Environment
 Hadoop File

Systems on Each
Data Center
 Vmware for

physical servers

Number of Datasets that are
actually moved during the
Workflow Execution

7

Optimization of Tasks
Scheduling by an Efficacy Data
Placement and Replication in
Cloud Computing [10]

same-as-above – 11 &

Replication Stage - tasks are
scheduled to those data centers
where most the datasets are
available locally

 Data Movement

between Data
Centers
 Response Time

Simulator in Java

 Number of Displacements
 Response Time

8

CDRM: A Cost-effective
Dynamic Replication
Management Scheme for Cloud
Storage Cluster [12]

 Model is designed to get the

relationship between
Availability and Replica
Number
 Block Independent

Distribution Policy
 Dynamic Replica Control

Strategy (Run on Namenode)

 Number of

Replicas
 Inter-request and

Intra-request
parallelism
 Performance
 Load Balance

Hadoop
Framework

 Availability
 Performance
 Load Balance

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2482

different data centers. Recent pattern of data files request is
used to predict next data file that will be requested. The
linear series technique - HELS (Holt’s Linear and
Exponential Smoothing) is used to predict the future access
frequency of the data since it has low computation time. If
such popular file has replication factor less than threshold,
replication is triggered. If a file is no more popular and
there are no data access requests for it, then replicas of such
files must be deleted.

There are read-only analytical workloads that need to
process large volumes of data in an efficient manner, as
well as transactional OLTP(On-Line Transaction
Processing)-style workloads that need to support high
throughputs with low latencies [14]. With the goal of
having hold on different workloads such that overall system
resource is utilized efficiently, work [14] proposes a
workload – aware approach. In this paper an abstract metric
called query span i.e., average number of machines used for
execution of workload is proposed which is used instead of
resource consumption. Along with employing data
replication techniques to reduce average query span, an
incremental repartitioning technique is proposed which is
based on identifying candidate set of data items which can
be migrated and yet their query span can be reduced
efficiently. Hypergraph Partition Algorithm (HPA) is used,
as there is large scale data used in execution.

III. OBSERVATIONS AND SUGGESTIONS ON ABOVE

ALGORITHMS

By analyzing the table created above in Table 1,
weakness in some of these strategies are pointed out along
with some suggestions for improvement:

 In [7], the choice of a replication strategy is done in
the beginning based on user request. Thus it falls
back into the category of static replication prone to
issues of static strategies. To search for replica BFS
(Breadth First Search) is used which is not that
efficient when the number of replicas is large. In
this OPERA monitor server used is implemented to
improve only availability but other non-functional
requirements are not implemented. Replica
placement must be considered seriously in this
approach instead of placing randomly.

 In [8], the adaptive replication algorithm proposed
considers popular data file and creates replica of it.
Due to increase in number of replicas there are
chances of these replicas being stored on single
datacenter and cause contention. Thus all those data
blocks accessed concurrently must be placed on
different nodes to reduce contention.

 In [9,10], replication mechanism is used within data
center, but any replication strategy is not used
among data centers. To achieve high availability,
replication similar to inter-stamp and intra-stamp in
Windows Azure architecture can be used in
scientific workflow cloud systems. In all the above
mentioned replication strategies, there are many
copies of data files stored at different locations but
none of them considers synchronization of data and
consistency of data. Synchronization results in

network bandwidth expenses but still data must be
synchronized periodically.

 In data intensive cloud applications, computations
are performed and large data caching can be used
which will reduce the processing time and database
access time drastically. For these data files to be
consistent TTL (Time to Live) can be set for each
of the files and updated timely. But again there is
disadvantage of using cache since there are many
nodes with same data files resulting in duplicates.
Hence it is used when reducing execution time is of
main concern.

 High availability and fault tolerance can be
achieved by using the approach followed in AWS
by creating availability zones. One or more
availability zones can be created for disaster
recovery and failover.

IV. CONCLUSION & FUTURE WORK

The algorithms proposed must be evaluated on test bed
once they have given appropriate results in simulated
environments. At present a scheduler alone is used in
DARE [8] approach which aims at improving data locality.
Further, it can be used in parallel with other schemes that
improve data locality. A better heuristic algorithm can be
followed to determine future data access request from cloud
applications to improve replica placement strategy. Genetic
algorithms can be used to find best replication in less time.
for it, then replicas of such files must be deleted.

The replication strategies proposed in the existing
literature typically optimize for energy efficiency, minimal
data movement and load balancing in single cloud scenario.
However, multiclouds, hybrid clouds and federation of
clouds, are seen as the ways in which cloud computing will
be used in the coming years. There is a need to devise
replication strategies which are interoperable across
geographically distrusted data centers belonging to same or
different cloud providers. This gives rise to challenges in
replica metadata management too.

REFERENCES
[1] Jawwad Shamsi, Muhammad Ali Khojaye, Mohammad Ali Qasmi,

“Data-Intensive Cloud Computing: Requirements, Expectations,
Challenges, and Solutions”. Received: 6 February 2012 / Accepted:
28 March 2013 © Springer Science+Business Media Dordrecht
2013.

[2] Ling Liu, M. Tamer Özsu, “Encyclopedia of Database Systems”
10.1007/978-0-387-39940-9_110 © Springer Science+Business
Media, LLC 2009

[3] http://aws.amazon.com.rds

[4] http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30w
indows-azure-storage-architecture-overview.aspx

[5] S. Ghemawat, H. Gobioff, S. T. Leung. “The Google file system”.
ACM SIGOPS Operating Systems Review, 2003, 37(5): 29-43.

[6] R. M. Rahman, K. Barker, R. Alhajj, “Replica placement design
with static optimality and dynamic maintainability”. In Proc. the 6th
IEEE International Symposium on Cluster Computing and the Grid,
Singapore, May 16-19, 2006, pp.434-437.

[7] T. Nguyen, A. Cutway, W. Shi, “Differentiated replication strategy
in data centers” In Proc. the IFIP International Conference on
Network and Parallel Computing, Zhengzhou, China,Sept. 13-15,
2010, pp.277-288.

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2483

[8] Cristina L. Abad, Yi Luy, Roy H. Campbell, “DARE: Adaptive
Data Replication for Efficient Cluster Scheduling” University of
Illinois at Urbana-Champaign.

[9] D. Yuan, Y. Yang, X. Liu, J. Chen, “A data placement strategy in
scientific cloud workflows”, Future Generation Computer Systems
(2010), doi:10.1016/j. future. 2010. 02.004

[10] Esma Insaf Djebbar, Ghalem Belalem, “Optimization of Tasks
Scheduling by an Efficacy Data Placement and Replication in Cloud
Computing” University of Oran, Oran, Algeria.

[11] Dejene Boru, Dzmitry Kliazovich, Fabrizio Granelli, Pascal Bouvry,
Albert Y. Zomaya, “Energy-Efficient Data Replication in Cloud
Computing Datacenters” Globecom 2013 Workshop - Cloud
Computing Systems, Networks, and Applications: 978-1-4799-
2851-4/13/$31.00 ©2013IEEE.

[12] Q Wei, B. Veeravalli, B. Gong, L. Zeng, D. Feng. “CDRM: A cost-
e®ective dynamic replication management scheme for cloud storage
cluster”. In Proc. 2010 IEEE International Conference on Cluster
Computing, Heraklion, Crete, Greece, Sept. 20-24, 2010, pp.188-
196.

[13] Mohamed-K HUSSEIN, Mohamed-H MOUSA, “A Light-weight
Data Replication for Cloud Data Centers Environment”
International Journal of Innovative Research in Computer and
Communication Engineering (An ISO 3297: 2007 Certified
Organization) Vol. 2, Issue 1, January 2014.

[14] K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, Samir
Khuller, “SWORD: workload-aware data placement and replica
selection for cloud data management systems” The VLDB Journal
DOI 10.1007/s00778-014-0362-1, Received: 23 September 2013 /
Revised: 6 April 2014 / Accepted: 4 June 2014 © Springer-Verlag
Berlin Heidelberg 2014.

[15] I. Stoica,R. Morris, D. Karger, M. F. Kaashoek, H Balakrishnan,
“Chord: A scalable peerto-peer lookup service for internet
applications” In: ACM SIGCOMM 2001 (2001)

[16] Siba Mohammad, Sebastian BreB, Eike Schallehn, “Cloud Data
Management: A Short Overview and Comparison of Current
Approaches” 24th GI-Workshop on Foundations of Databases
(Grundlagen von Datenbanken), 29.05.2012 - 01.06.2012,
Lübbenau, Germany.

[17] E. Hewitt. “Cassandra The Definitive Guide” O Reilly Media, Inc,
2010.

[18] Priya Deshpande, Aniket Bhaise, Prasanna Joeg, “A Comparative
analysis of Data Replication Strategies and Consistency
Maintenance in Distributed File Systems” International Journal of
Recent Technology and Engineering (IJRTE) ISSN: 2277-3878,
Volume-2, Issue-1, March 2013.

[19] Haiying (Helen) Shen “IRM: Integrated File Replication and
Consistency Maintenance in P2P System” IEEE Transactions On
Parallel And Distributed Systems, Vol. 21, No. 1, January 2010.

Rashmi Ranjana T P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2479-2484

www.ijcsit.com 2484

